22/07(a)

The University of Sydney

CHEMISTRY 1B - CHEM1102

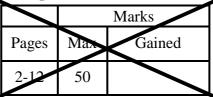
FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2005

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 17, 18, 21 & 24 are for rough working only.

OFFICIAL USE ONLY

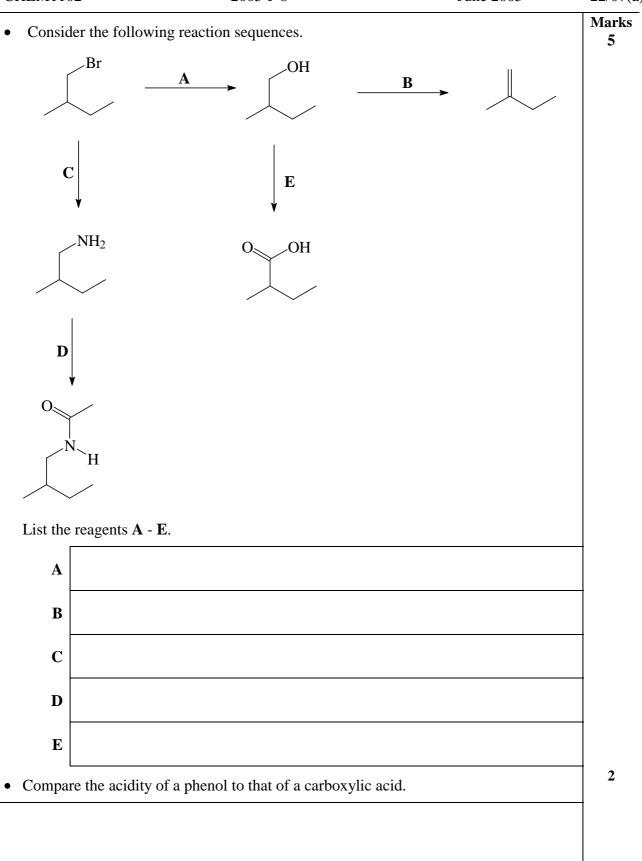
Multiple choice section

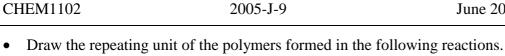
Short answer section

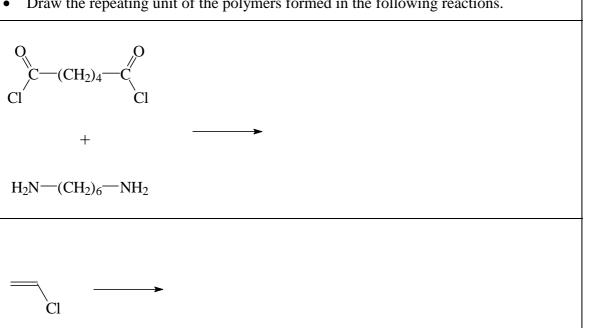
		Marks		
Page	Max	Gained		Marker
13	6			
14	6			
15	7			
16	6			
19	8			
20	6			
22	7			
23	4			
Total	50			
Check Total				

CHEM1102	2005-J-2	June 2005	22/07(a)
• Many elemental me centred cubic, a boo	etals crystallise in one of three cubic dy-centred cubic or a simple cubic un ilarities between these different crys	forms, either with a face- nit cell. Explain the main	Marks 3
	n hydroxyapatite, $Ca_5(PO_4)_3OH$. Wy? Use chemical equations where approximately where approximately the set of the se		3
How does the fluor	idation of drinking water aid the prev	vention of tooth decay?	

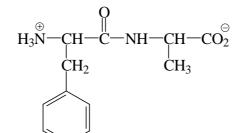
Marks • The molecular formulas of the two water soluble compounds, Na₂O and Cl₂O, look 3 very similar, but their chemical properties are very different. Classify each of these compounds as either acidic or basic in aqueous solution. What happens to the pH value if you dissolve a significant amount of either of these compounds in neutral water (at 25 °C)? Explain why these compounds react so differently. 3 • In a major industrial process alumina, Al_2O_3 , is isolated from bauxite, a mineral consisting of mainly Al₂O₃ and Fe₂O₃. The first step of the process is treatment of the solid ore with concentrated aqueous NaOH solution. Describe how this step enables the separation of the two compounds. Use chemical equations as part of your explanation. Later on in the process, CO₂ is used to precipitate Al₂O₃ from solution. Write a chemical equation for this step. What property of Al_2O_3 is exploited in these two steps?


CHEM11	HEM1102 2005-J-4 June 2005								
	ler the compoun thylenediamine			$_{2}]Br_{2}\cdot 2H_{2}O.$		Marks 3			
Write (he formula of th	ne complex ion.							
Write (he symbols of t	he ligand donor	atoms.			_			
What i	s the <i>d</i> electron	configuration o	f the metal ion	in this complex?					
	ta given in the lorine at 1400 F		re obtained for	the reaction between	nitric oxide	4			
		2NO(g) +	$Cl_2(g) \rightarrow 2Nc$	OCl(g)					
	Experiment Number	Initial [Cl ₂] (mol L^{-1})	Initial [NO] $(mol L^{-1})$	Initial Reaction Rate $(mol L^{-1} s^{-1})$					
	1	0.10	0.10	0.18					
	2	0.20	0.10	0.36					
	3	0.10	0.20	0.72					
Deduc	e the rate law fo	r this reaction.							
			Rate =						
Calcul	ate the value of	the rate constan	ıt.						
						1			


k =


• Calculate the pH a 0.200 M solution of acetic acid, CH ₂ COOH, at 25 °C. Marks 6 (The pK ₃ of acetic acid is 4.76). pH = Solid sodium acetate, NaCH ₃ CO ₂ , (0.15 mol) was dissolved in 0.500 L of 0.200 M acetic acid and the volume made up to 750 mL with water. What is the pH of the resulting solution? pH = Merks pH = How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00? Answer:	CHEM1102	2005-J-5	June 2005	22/07(a)
Solid sodium acetate, NaCH ₃ CO ₂ , (0.15 mol) was dissolved in 0.500 L of 0.200 M acetic acid and the volume made up to 750 mL with water. What is the pH of the resulting solution? pH = How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?			OOH, at 25 °C.	Marks 6
Solid sodium acetate, NaCH ₃ CO ₂ , (0.15 mol) was dissolved in 0.500 L of 0.200 M acetic acid and the volume made up to 750 mL with water. What is the pH of the resulting solution? pH = How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?				
Solid sodium acetate, NaCH ₃ CO ₂ , (0.15 mol) was dissolved in 0.500 L of 0.200 M acetic acid and the volume made up to 750 mL with water. What is the pH of the resulting solution? pH = How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?				
Solid sodium acetate, NaCH ₃ CO ₂ , (0.15 mol) was dissolved in 0.500 L of 0.200 M acetic acid and the volume made up to 750 mL with water. What is the pH of the resulting solution? pH = How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?				
acetic acid and the volume made up to 750 mL with water. What is the pH of the resulting solution? pH = How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?		pH =		
How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?	acetic acid and the vo			
How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?				
How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?				
How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?				
How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?				
How much more NaCH ₃ CO ₂ needs to be dissolved in the above solution to give a final pH of 5.00?		nH –		
Answer:			above solution to give a final	
Answer:				
		Answer:		

Marks • Draw the constitutional structure of the major organic product formed in the following 8 reactions. Indicate the correct isomer where appropriate. Pd catalyst + H₂ OH + $\operatorname{Cr}_2\operatorname{O}_7^{2\Theta}/\operatorname{H}^{\oplus}$ \longrightarrow 1) CH₃CH₂MgBr _____ +|| 0 Br 10 M NaOH heat +1) LiAlH₄ +2) H[⊕]/ H₂O ЮH + HBr 1) SOCl₂ +2) CH₃OH OH $+ 2Br_2$ С≡С−н


Marks • Devise a synthesis of the following compounds from the starting material indicated. 6 Note that more than one step may be required and you should indicate all necessary steps and the constitutional formulas of any intermediate compounds. OCH₃ Çl O Cl

• Write the constitutional formulas of the major products from the acid catalysed hydrolysis of the following dipeptide.

22/07(a)

Marks

2

June 2005

CHEM1102 - CHEMISTRY 1B

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Deci	mal fract		
Fraction	Prefix	Symbol	Μ
10^{-3}	milli	m	
10^{-6}	micro	μ	
10^{-9}	nano	n	
10^{-12}	pico	р	

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	Μ
10^{9}	giga	G

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°									
Reaction	E° / V								
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82								
$\mathrm{Ce}^{4+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72								
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36								
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23								
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92								
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80								
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77								
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53								
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34								
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15								
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)								
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04								
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13								
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14								
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24								
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28								
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44								
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74								
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76								
$2H_2O ~+~ 2e^- \rightarrow ~H_2(g) ~+~ 2OH^-(aq)$	-0.83								
$\operatorname{Cr}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Cr}(s)$	-0.89								
$\operatorname{Al}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Al}(s)$	-1.68								
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36								
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71								

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Radioactivity
$E = h\nu = hc/\lambda$	$t_{l/2} = \ln 2/\lambda$
$\lambda = h/mv$	$A = \lambda N$
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)
Acids and Bases	Gas Laws
$pK_{w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2'$
Electrochemistry	Thermodynamics & Equilibrium
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
Moles of $e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} \left(RT ight)^{\Delta n}$
$E^{\circ} = (RT/nF) \times 2.303 \log K$	
$= (RT/nF) \times \ln K$	
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$	
Polymers	Mathematics
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$\ln x = 2.303 \log x$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008																	2 нешим Не 4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM Be											BORON	CARBON C	NITROGEN N	OXYGEN O	FLUORINE F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
sodium Na	MAGNESIUM Mg											ALUMINIUM	SILICON Si	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
22.99	24.31											26.98	28.09	1 30.97	32.07	35.45	39.95
19 potassium	20 calcium	21 scandium	22 TITANIUM	23 vanadium	24 CHROMIUM	25 manganese	26 IRON	27 cobalt	28 NICKEL	29 COPPER	30 zinc	31 gallium	32 germanium	33	34 selenium	35 BROMINE	36 KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37 RUBIDIUM	38 strontium	39 yttrium	40 zirconium	41 NIOBIUM	42 molybdenum	43	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 XENON
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	BARIUM Ba		HAFNIUM Hf	tantalum Ta	TUNGSTEN	RHENIUM Re	OSMIUM OS	IRIDIUM Ir	platinum Pt	GOLD Au	MERCURY Hg	THALLIUM	LEAD Pb	візмитн Ві	POLONIUM PO	ASTATINE At	radon Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 RADIUM	89-103	104 RUTHERFORDIU	105 M DUBNIUM	106 seaborgium	107 BOHRIUM	108 hassium	109 meitnerium				•		•			
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
	57		8	59	60	61	62	63	64	65		66	67	68	69	70	71
LANTHANID	ES LANTHA		aum pr	ASEODYMIUM Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM Eu		m terbi		sprosium Dy	HOLMIUM HO	ERBIUM Er	THULIUM Tm	ytterbium Yb	LUTETIUM Lu
	138.			1 40.91	144.24	[144.9]	150.4	151.96	157.25				164.93	167.26	168.93	173.04	174.97
	89		0	91	92	93	94	95	96	97		98	99	100	101	102	103
ACTINIDES	ACTIN	им тно	RIUM PI	ROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKEL	LIUM CAI	IFORNIUM E	INSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	A [227		`h 2.04	Pa [231.0]	U 238.03	Np [237.0]	Pu [239.1]	Am [243.1]	Cm [247.1	Bl] [247		Cf (52.1] [Es 252.1]	Fm [257.1]	Md [256.1]	No [259.1]	Lr [260.1]
	[227	.0] 232	2.04	[231.0]	230.03	[237.0]	[239.1]	[243.1]	[247.1] [247	.1] [4	.52.1]	<i>LJL</i> .1]	[237.1]	[230.1]	[239.1]	[200.1]

PERIODIC TABLE OF THE ELEMENTS

22/07(b)